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INTRODUCTION 
 
Basic protection functions of distributive leads have been present and used for a long time, both with 
electromechanical and statical protections; they are also used in microprocessor protections for this purpose. 
They are, simply put, based on various types of over current protection functions, directional protection 
functions, automatic switching functions. These protections can also contain thermal protection functions, as 
well as frequency protection. All of the protection functions are based on phase currents, and phase and line 
voltages; they also depend on direct, inverse and zero component values of currents and voltages. An adequate 
digital signal processing (of currents, voltages and their symmetrical components) is needed for the practical 
realization of all the protection functions mentioned, as well as for measurements, which make an integral part of 
multifunctional digital terminals (installed in same devices with protection functions). This means that an 
adequate signal processing of currents and voltages (sometimes of directly measured zero components) is 
essential for determination of symmetrical components (of current and voltage), power (active and/or reactive), 
frequency, temperature. Algorithms for determination of effective (current and voltage) values, symmetrical 
components (current and voltage), frequency, power (active and reactive) and thermal protection, have been 
presented in this paper. 
 
1.CURRENT AND VOLTAGE MEASUREMENT ALGORITHM 
 
This algorithm is based on recursive Fourier's method, which is well known and widely used in signal 
processing. This is a very robust method which has some good filtering capabilities, but also, has some 
drawbacks. One of the main drawbacks is necessity of knowing the signal frequency, before processing it. If the 
frequency of the real signal differs from the frequency assumed in Fourier's method, algorithm makes an error 
when calculating the harmonic component's amplitude of the signal. In this work, recursive Fourier's algorithm 
has been modified, so changing of signal frequency in terms of few Hz (which is enough for measurements of 
industrial frequency signals), has a very small influence on determination of basic harmonic's amplitude. Let's 
observe the signal (of voltage or current) in the following form: 
 

)cos()( φω += tCtx                             (1).          
  
Parameters of the signal are: C -maximum value, f2πω = -angle frequency, φ -starting phase angle. 
 
If the exact value of angle frequency (ω )is unknown and approximated with assumed value fω , parameters 
can be easily calculated with the use of discrete Fourier series : 
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which corresponds with frequency fω ), fω -assumed frequency in Fourier's series (if we want (2) to give a 

good result fω  must equal ω , ωω =f ), nx - n-th signal sample. Lets observe two sequences of samples. 

First one indexed with m321n ,...,,,= , and second one with ),...(,, 1m432n += . Both of these correspond 
with the period of signal being processed. Second sequence is "younger" cause it holds a sample indexed with 
(m+1), while the oldest sample indexed with (1) is rejected. Each of the sequences defines phasors of harmonics 
(of the processed signal): 
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and:   
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Lets subtract them: 
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Based on this analysis, we can write relations for recursive calculation of phasor components, in (n+1)-th step of 
iteration cyclus: 
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given symbols represent: n-sample number ( ,.....,,,, 4321n =  in continual signal analysis, n can become a huge 
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In practical applications of discrete Fourier's series, with continual processing of long signals, n would become 
huge and it would lead to cpu owerflow error. We can solve this, knowing that sinus and cosines functions are 
periodical. That means that (n) doesn't have to be larger then (m), it can take values  

21m321m321m321m321n ,,,...,,,,,...,,,,,...,,,,,...,,,=  etc.. This implies that we have to have one buffer 
(cpu register) of (m) in length; members of this register have to be updated in each itteration step, after 



calculation of signal phasor's components. Lets mark signal samples with ( x ) and buffer members with 
)(iX , where i takes values m321i ,...,,,=  . Phasor components of the first harmonic can be calculated as: 
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where  21m321m321m321m321n ,,,...,,,,,...,,,,,...,,,,,...,,,= etc.. 
 
Equation (6) is given in a form of computer instruction, which means that we get a new value of fA  by adding 
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is rejected, and other sample indexes are decreased by (1). New sample (taken from A/D converter) becomes a 
sample indexed with (m), xmX =)( . Calculation is repeated in the same way. For extensive calculations, 
vector X  needs to be (m) in length. All other units are scalars. There is no need to calculate sinus and cosinus 
functions (which we have in expressions for fA  and fB ) in each iteration step. It's better to calculate them in 
advance, for one complete period, and then store in two vectors, each of (m) in length. These vectors are: 
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Members of these vectors can be multiplied with ⎟
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values). Using this procedure, only two additions and one multiplication is needed in each iteration step, which is 
minimal cpu time consuming. This is main advantage of recursive algorithm, when compared to non-recursive. 

Signal which is being processed with (6), should be sampled with sampling period 
m
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assumed frequency in Fourier's method is defined with period of sampling odabT  and with number of samples 

(m ) in one period. When a sampling period is fixed, assumed signal frequency fω can be changed only by 
changing the number of samples in a period. However, this makes a very rough difference for a relatively small 
number of samples in a period. That is the reason why fixed assumed signal frequency is being used in most 
cases. There are cpu's where one can change sampling period, but these changes are not continual, so it is not 
possible to observe continual changes of the real signal frequency, while processing it with Fourier transform. 
 
When a long signal is processed, real ( fA ) and imaginary ( fB ) components of phasor X  are calculated 

after each sample. If fωω = , components fA  and fB  are constant, because x  and )(1X  are shifted for one 

period exactly, which means they have the same values, so their difference is 01Xx =− )( , and there's no 
correction of calculated component. Phasor argument depends on starting sample's position (in a signal's wave), 
or, in another words- it depends on starting phase (phase angle) of the first sample. Amplitude of the signal's 
main harmonic is constant, because its components are constant also. 
 



If fωω <  or fωω > , components fA  and fB  are not constant, and they change according to deformed 

sinus and cosines functions, with frequency fωωω −=∆ . Deformations of these curves have wave-like 

characteristics, and they increase with larger ω∆ . Frequency of wave-like deformation is ( ω2 ). Because of 
wave deformation of components fA  and fB , the main harmonic's amplitude also has frequency ( ω2 ). 
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Based on analysis given here previously, it can be concluded that recursive Fourier's algorithm, expressions (6), 
gives incorrect values of main harmonic's amplitude, when signal frequency (ω ) differs from assumed 
frequency ( fω ). When the signal is continually processed, main harmonic's amplitude oscillates with 

frequency ω2 . This fact is used for modification of Fourier's algorithm. Knowing that main harmonic's 
amplitude oscillates with frequency ω2 , better amplitude values can be accomplished by averaging results, 
after each half period of main harmonic's signal. In other words, if a signal is processed with (m ) samples per 
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results will have a time delay of half a period (of the main harmonic). However, any signal filtration always 
includes time delay, so one has to compromise between degree of filtration and amount of time delay. When 
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 samples does not define half 

period of the main harmonic exactly. That is the reason why averaging result is not constant, it also oscillates 
with ω2 , but with far smaller amplitude then  algorithm result that doesn't use averaging. Oscillating of average 
value can be decreased if we apply averaging once more. It means that after this, algorithm has a full period 
delay of a basic harmonic. After applying averaging twice, we get a very "steady" value of the main harmonic's 
amplitude with a very small deviation (error), if the frequency is within (47-53)Hz range; that is acceptable when 
having in mind that frequency rarely deviates  for more then 3Hz, in power systems with nominal frequency of 
50Hz. Delay is acceptable for all types of current and voltage relays, so this algorithm is acceptable as well. 
 
For practical usage of expressions (6), additional vectors of sinus (7), cosines (8) and samples ((m ) in length), 

results and average values ( ⎟
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 in length), need to be formed. Vector of samples is: 

[ ]Tm321 xxxxX ,...,,,= .                           (9) 
 
Using additional vectors (7) and (8), calculations in (6) include only two multiplications and four additions, 
without having to calculate trigonometrical functions and divisions, which enormously speeds up the whole 
process. After fetching of each new sample novox , vector (9) should be updated by changing its indexes, 
according to the following: 

novom3221 xxxxxx === ...,,, . 

In this way, we get a "sliding" window and each sample is treated as a scalar value. For each new sample, 
expression (6) gives fA  and fB . We get: 
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In order to calculate amplitude's average or first harmonic's effective value average, and additional vector (which 
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After calculating new value of the amplitude fnovoC  using (6) and (10), vector (11) should be updated, by 
rejecting its first member and adding new one: 
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Procedure goes on in the same way for each new amplitude value. If we want to find an average of the main 

harmonic's amplitude averages, we need to form additional vector of average values (which is ⎟
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After calculating new amplitude's average value novoCSS  using (13), vector (9) should be updated, by rejecting 
its first member and adding new one: 
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Procedure goes on in the same way for each new amplitude's average value. For practical usage of modified 

recursive Fourier's algorithm, we need three vectors (of ( m ) in length), and two vectors (of ⎟
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which means that very few memory resources are needed. Algorithm is simple, very fast and excellent for 
applying in relay protection.  
 
2.ALGORITHM FOR MEASUREMENT OF SYMMETRICAL COMPONENTS 
 
Method of symmetrical components is based on the fact that non symmetrical three phased phasor system can be 
presented using two three phased phasor symmetrical systems with opposite phase angles and one single phased 
phasor system. Having in mind that this method is based on decomposition of electrical units, it also includes the 
superposition method, which can only be used in linear circuits. This method is also known as Fortesque's 
transformation, named after its author. Non symmetrical three phased system of voltages in phases A, B and C 
(same goes for the currents), can be expressed using direct (d), inverse (i) and zero (0) component system, shown 
in the following relation: 
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given symbols represent: 32jea π= ; [ ] [ ]TCBA UUUU = -vector of phase voltages, phases A, B and C; 

[ ] [ ]Tid0K UUUU = -vector of component voltages (zero, direct and inverse voltage component). 
 



Three phased asymmetrical system of voltages, can be decomposed by symmetrical components using the 
inverse relation of (14): 
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Using (15), we get vectors of symmetrical components: 
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where vectors of phase values are defined as in (2): 

jCSCCUjBSBCUjASACU CBA +=+=+= ,, , 
 
and vectors of symmetrical components as: 

iiiddd000 jSCUjSCUjSCU +=+=+= ,, . 
 
Second letter (C) in components of phase vectors, marks the cosines component (real) while first letter (S) in 
components of symmetrical components' vectors, marks the sinus component (imaginary). Working with cosinus 
and sinus components is better, because real component can be either cosines or sinus, depending on the 
coordinate system chosen for vector representation. 
 
It has been emphasized that Fourier's algorithm gives incorrect values of cosines component's amplitude and 
sinus component's amplitude, of processed signal's main harmonic, when signal's frequency differs from 
assumed frequency. Having in mind that symmetrical components are sums of phase vector components, they 
will be calculated incorrectly as well. When three phased signals are being continually processed, symmetrical 
components' amplitudes (of the main harmonic), oscillate between maximal and minimal values, with frequency 
ω2 . This fact was used for modification of Fourier's algorithm, and for measurement of symmetrical 

components. Knowing that symmetrical components' amplitudes (of the main harmonic) oscillate with ω2 , 
better values can be accomplished by averaging results, after each half period of main harmonic's signal. In other 
words, if a signal is processed with (m ) samples per period, it would be sufficient to calculate average of 
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 results. If averaging is applied, final processing results will have a time delay of half a period (of the main 

harmonic). However, any signal filtration always includes time delay, so one has to compromise between degree 
of filtration and amount of time delay. When signal frequency differs from assumed frequency in discrete 

Fourier series, ⎟
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 samples does not define half period of the main harmonic exactly. That is the reason why 

averaging result is not constant, it also oscillates with ω2 , but with far smaller amplitude then  algorithm result 
that doesn't use averaging. Oscillating of average value can be decreased if we apply averaging once more. It 
means that after this, algorithm has a full period delay of a basic harmonic. After applying averaging twice, we 
get a very "steady" value of the main harmonic's amplitude with a very small deviation (error), if the frequency 
is within (47-53)Hz range; that is acceptable when having in mind that frequency rarely deviates  for more then 



3Hz, in power systems with nominal frequency of 50Hz. Delay is acceptable for all types of relays based on 
symmetrical components, so this algorithm is acceptable as well. 
 
For calculating symmetrical components of three phased signals, relation (2) should be used on signals in each of 
three phases. For practical calculation of symmetrical voltage components, additional vectors of sinus and 

cosines are needed, defined in (7) and (8). Also two more additional vectors, both of ⎟
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one is vector of symmetrical components and the other one contains symmetrical components' averages. Vectors 
of samples are: 
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This method includes only additions and multiplications, without having to calculate trigonometrical functions 
and divisions, which speeds up the procedure. After taking new samples novoa , novob , novoc , vectors (19) should 
be updated in this way: 
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In this case also, we have a sliding window, and samples are treated as scalars. Relations  (16), (17) and (18) 
give us f0U , dfU  and ifU  for each window. For calculation of symmetrical components amplitude averages 
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After calculation of new values of amplitudes fnovo0U , dfnovoU  and ifnovoU , using (2), (16), (17) and (18), 
vectors (20)  should be updated by rejecting their first members and adding new ones: 
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Procedure goes on in the same way for each new data window. For averaging of symmetrical components' 

amplitude averages (of the main harmonic), we need additional vectors of ⎟
⎠
⎞

⎜
⎝
⎛

2
m

 in length:  
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After calculation of new amplitude averages novo0US , dnovoUS  and inovoUS  using (21), vectors (22) should be 
updated by rejecting their first members and by adding new ones: 
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After this procedure, we get: 
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Procedure goes on in the same way for each new data window. For practical application of Fourier's algorithm 

for symmetrical components, we need five vectors (of )(m  in length) and six vectors (of ⎟
⎠
⎞

⎜
⎝
⎛

2
m

 in length). 

Maximal number of samples in data window is 50, so this algorithm is not resource hungry. Algorithm is simple 
(it uses scalar calculations) and fast enough for usage in relay protection. 
 
3.POWER MEASUREMENT ALGORITHM 
 
Power measurement algorithm requires processing of current and voltage samples, as described previously in 
current an voltage measurement algorithm. Using relations: 
 

ff irf jUUU += , 
ff irf jIII +=  and )()(*

ffff irirfffff jIIjUUIUjQPS −⋅+==+= , 
 
we get expressions for active and reactive power: 
 

ffff iirrf IUIUP +=  i 
ffff irrif IUIUQ −= .                                         (24) 

 
Based on analysis given previously, it can be concluded that Fourier's algorithm gives incorrect value of main 
harmonic's amplitude, when signal frequency differs from assumed frequency. When the signal is continually 
processed, main harmonic's current amplitude and main harmonic's voltage amplitude oscillate with frequency 
ω2 . This fact is used for modification of Fourier's algorithm for evaluation active and reactive power 

measurement of main current and voltage harmonics. Knowing that ( fP ) and ( fQ ) amplitudes oscillate 

with ω2 , better values can be accomplished by averaging results, after each half period of main harmonic's 
signal. In other words, if a signal is processed with (m ) samples per period, it would be sufficient to calculate 

average of ⎟
⎠
⎞

⎜
⎝
⎛

2
m

 results. If averaging is applied, final processing results will have a time delay of half a period 

(of the main harmonic). However, any signal filtration always includes time delay, so one has to compromise 
between degree of filtration and amount of time delay. When signal frequency differs from assumed frequency in 

discrete Fourier series, ⎟
⎠
⎞

⎜
⎝
⎛

2
m

 samples does not define half period of the main harmonic exactly. That is the 

reason why averaging result is not constant, it also oscillates with ω2 , but with far smaller amplitude then  
algorithm result that doesn't use averaging. Oscillating of average value can be decreased if we apply averaging 
once more. It means that after this, algorithm has a full period delay of a basic harmonic. After applying 
averaging twice, we get a very "steady" value of the main harmonic's amplitude with a very small deviation, if 
the frequency is within (47-53)Hz range; that is acceptable when having in mind that frequency rarely deviates  



for more then 3Hz, in power systems with nominal frequency of 50Hz. One period delay is acceptable for all 
types of directional relays, so this algorithm can be used in relay protection for calculating direction. For 
practical usage of these relations, additional vectors CO , SI , voltage and current samples ((m ) in length) 

and vector of powers and power averages( ⎟
⎠
⎞

⎜
⎝
⎛

2
m

 in legth). 

 
Vectors of voltage and current samples are: 
 

[ ]Tm321 uuuuUODB ,...,,,=  i [ ]Tm321 iiiiIODB ,...,,,= .                            (25) 
 
After fetching new samples novou  and novoi , vectors (25) are updated as shown: 
 

novom3221 uuuuuu === ...,,,  i novom3221 iiiiii === ...,,, . 

In this way we get sliding window, and signal samples are treated as scalars. For each data window, relations (5) 
give (

fff rir IUU ,,  and 
fiI ). Then we use relation (24) and get ( fP ) and ( fQ ). For calculation of ( fP ) 

and ( fQ ) average (of the main harmonic), additional vectors of ⎟
⎠
⎞

⎜
⎝
⎛

2
m

 in length need to be formed: 
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After calculation of new fnovoP  and fnovoQ  using (5), vectors (26) should be updated by rejecting their first 
members and adding new ones: 
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After this procedure, we get: 
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Procedure goes on in the same way for each new pair of ( fP ) and ( fQ ). For averaging of power averages, 

we need to form additional vectors of power averages (of ⎟
⎠
⎞

⎜
⎝
⎛

2
m

 in length): 
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After calculation of new power averages novoPS  and novoQS  using (27), vectors (28)  need to be updated by 
rejecting their first members and adding new ones: 
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2
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2
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After this procedure, we get: 
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Procedure goes on in the same way for each new pair of power averages. For practical application of 

modifiedFourier's algorithm, we need four vectors  of ( m )  in length, and four vectors  of ⎟
⎠
⎞

⎜
⎝
⎛

2
m

 in length, 

which means, very few memory resources. Algorithm is simple and fast enough for usage in relay protection. 
Algorithm of directional protection (with measurement of line voltages and phase currents), based on power 
measurement, is shown in picture 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Picture 1. Algorithm od directional protection function MPZ - ZIM 
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4. ALGORITHM OF DIGITAL THERMAL PROTECTION 
 
Thermal protection is one of the basic protection functions of all elements in power systems, and its algorithm is 
implemented as a stand-alone function in most of today's multifunctional relays. Indirect digital thermal 
protection of general type is implemented inside of microprocessor MPZ-ZIM protection. Its algorithm is mainly 
based on measurement of amplitudes of phase currents (of the main harmonic), while protected element, in 
thermal sense, is approximated as a homogenous body with time constants for heating and cooling. Algorithm 
needs more resources when it comes to cpu time. 
 
In algorithm given, the heating model is based on assumption that protected object is thermally homogenous 
body, which can be modelled with time constants for heating and cooling, in processes of heating and cooling, 
respectively. The heating power is modelled with Joule's losses on three phased symmetrical element, with 
constant electrical phase resistance R and phase currents of  alternate values. We assume that these losses are 
equally spread trough the element volume. Temperature of the surrounding is modelled as constant temperature 
which can be tuned as needed. Under the conditions given, differential equation of thermal balance (equation of 
heating) is used: 

( ) dtKCddtIIIR 2
C

2
B

2
A θθ +=++ ,                                                              (29) 

 
symbols given represent: CBA III ,, -effective values of phase currents calculated with the use of recursive 

Fourier's method; ( )dtIIIR 2
C

2
B

2
A ++ - energy of heating, generated in three-phased element during a short 

interval of time dt ; θCd -increase in accumulated energy of heating, which is manifested by temperature 
increase in amount of θd ( C  is heating capacity); dtKθ -heating energy emitted into the surrounding or the 
cooling medium, in time interval dt  ( K  is cooling constant and θ  is overtemperature of object).  
 
Possibility of protected object having asymmetrical current load is assumed in equation (29). That is, for one 
thing, a real possibility (cuts in phase lines, non symmetrical voltage excitation, non symmetrical load etc), and, 
on the other hand, that doesn't at all cause any technical problems with thermal protection function realisations , 
because multifunctional relay processes all of three phase currents. In steady state ( 0d =θ ) there is a balance 
between heating power and colling power. If the heating is caused by nominal phase currents, which means 

nCBA IIII ===  (nominal phase current is defined with nominal apparent power and nominal voltage, and 
for specific cooling conditions), then stationary overtemperature corresponds with nominal overtemperature:  
 

K
RI3 2

n
n =θ .                                                                               (30) 

 
 
Dividing this with nominal over temperature nθ , equation (29) can be normalized, and it results in: 
 

( )
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⎞
⎜⎜
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Z I3
III100

dt
dT (%)(%) θθ

,                                                 (31) 

 

symbols given represent: 
K
CTZ = -heating time constant of protected element, 

n

100
θ
θθ =(%) -percentage of 

element over temperature. In cases of large current overloads ( nCBA I2III >∨∨ ), heating power is much 
larger then cooling power. That causes local overheating, which makes starting assumption about equal heating 
very rough. For the sake of more efficient thermal protection, in cases of large current overloads, the heating 
process can be treated as adiabatic. The adiabatic heating equation is : 
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⎟⎟
⎠

⎞
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⎝

⎛ ++
= 2

n

2
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B

2
A

Z I3
III100

dt
dT (%)θ

.                                                         (32) 

 



In this analysis , the heating process is treated as adiabatic with three phased heating generation , if one of phase 
currents at least , is at least two times larger then nominal. This ensures more secure approach and some effects 
not treated in this analysis are compensated (increase of electrical resistance with the temperature inerease, for 
example). It can also be assumed that heating time counstant, in cases of big overloads, is smaller then the time 
constant in usual working conditions. When the element is disconnected from its power supply, thermal process 
of cooling is taking place inside of it; generally speaking, cooling constant HT can be different from heating 

constant ZT . The difference usually exists in rotating electrical machines, where conditions change when the 
machine is switched off; cooling conditions change because the rotor and its cooling fan stop, so ventilation 
conditions change also. For that reason, it is very important to assume different values for time constants during 
cooling, (these constants are basiclly the same in all statical components, that have no rotating parts). Taking  
this into consideration, thermal process of cooling is given in the next expression:                                                     
   

( ) (%)(%) θθ
−=

dt
dTH .                                                                 (33) 

 
One of specific things related to thermal protection function and its algorithm, is the fact that entire algorithm 
needs to be permanently processed. So, an  optimized  algorithm for temperature  measurement is needed, which 
ensures fast and reliable processing. Besides, opposite of other protection types, thermal protection function must 
be active even in cases when element loses its power supply, in order to track its cooling and to continue 
temperature tracking when it gets its power supply back online. For that reason, continual work of thermal 
protection function must be achieved. Relatively small value of sampling period ST  (of the order of few ms ) 

compared to heating time constant ZT  (which is, for most elements in power systems, from order of few minutes 
to few tens of minutes) makes it possible to solve the differential equation of heating numerically. Knowing this, 
differential temperature increase θd  in (29)  can be replaced with finite temperature increase θ∆ , made in 
time SS f1Tt ==∆ , equation (29) then becomes: 
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where symbols given represent: )()()( ,, 1iC1iB1iA III +++ -estimated phase currents in )( 1i + -th sampling step; 

(%))( 1i+∆θ -percentage temperature addition in time interval ST , which corresponds with )( 1i + -th sampling 

step ( temperature base value corresponds  with nominal overtemperature of protected element) ; (%)iθ  - 
percentage overtemperature value of the element, at the end of i -th sampling step. Similar to previous analysis 
and equation (32),expression for temperature addition during adiabatic heating can be given as: 
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In cases when protected element is disconnected from its power supply, cooling conditions can, as explained 
before, take place with time constant that is not the same. This possibility must also be included in algorithm. 
Detection of this state is done by comparing the amplitude of phase current with some specified minimal current 
value ( minI ). This current value ( minI ), can occur even when element is offline and it can be caused by some 
parasite effects, such as capacitive currents for example. So, if the condition is met: 
 

min)()()( ,, IIII 1iC1iB1iA <+++ ,                                                            (36) 
 
temperature addition is calculated by the use of next expression: 
 

(%)(%))( i
H

S
1i T

T θθ −=∆ + .                                                            (37) 



 

 
Picture 2. Logical block diagram of digital thermal protection 
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Percentage overtemperature of protected object, at the end of  )( 1i + -th step, is: 
 

(%)(%)(%) )()( 1ii1i ++ ∆+= θθθ .                                                 (38) 
 
Knowing that relay can also show absolute temperature on display, this option should be also included in 
algorithm. Absolute temperature at the end of  )( 1i + -th  sampling step ( )( 1i+′θ ) is: 
 

a1i1i θθθ +=′ ++ )()( ,                                                              (39) 
 
where is aθ -surrounding temperature (minimal temperature that element can have when it is offline, for the 
given temperature conditions). Thermal protection  is usually two level protection. First level is the alarm and 
second one is operational. Algorithm of thermal protection is shown in picture 2.  
 
5.FREQUENCY PROTECTION ALGORITHM 
 
Frequency protection algorithm is based on least error squares error (LES) method. Implemented algorithm 
shows improvements compared to iterative non recursive LES method, when it comes to processing speed. 
Complete mathematical method for minimization of sums of squares, is presented as a fixed coefficient matrix in 
relay's memory buffer. Determination of frequency, then becomes a multiplication of vectors of samples (of 
current data window) with corresponding data rows. Algorithm is optimized in terms of coefficient matrix 
forming, for practical implementation. Voltage signal (its frequency is being measured), generally is a composite 
-periodical function of time; it can contain a DC voltage component along with higher harmonics, both in normal 
and disturbed working states. Therefore, the input voltage signal (in A/D converter), can in mathematical terms, 
be shown as: 

∑
=

+++=
M

1k
kk0 tetkUUtu )()sin()( θω .                                        (40) 

 
Using basic trigonometric relations, previous relation can also be written as: 
 

)()cos()sin()( tetkUtkUUtu
M

1k
ik

M

1k
rk0 +++= ∑∑

==

ωω ,                        (41) 

 
given symbols are: )(tu -voltage magnitude in time moment t ; 0U -DC voltage component; f2πω = -angle 

frequency of the main harmonic; M -highest harmonic order in voltage signal; kU -amplitude of k -th 

harmonic; kθ -phase of k -th harmonic; kkrk UU θcos= , kkik UU θsin= -real and imaginary component of 

k -th harmonic, respectively; )(te -random noise signal. 
 
By expanding trigonometric functions )sin( tkω  and )cos( tkω  in Taylor's series, near nominal (assumed) 

frequency 0ω , expression (41) can be linearized. Linearized analytical voltage signal form, near its nominal 

frequency 0ω , can be given as: 
 

[ ] [ ] )()sin()cos()cos()sin()( tetkktUtkUtkktUtkUUtu
M

1k
0ik0ik

M

1k
0rk0rk0 +∆−+∆++= ∑∑

==

ωωωωωω .(42) 

 
Relation (42) can be simplified, and shown in a form:    
 

)()()( textatu
M4

1j
jj +=∑

=

,                                                (43) 

 
given symbols are: )(ta j -coefficients; jx -variables defined in the following way: 
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ωω

ωωωω
(44) 

 
Each of the voltage signals on A/D converter output, can be described with (43). If we watch only )(m  
consecutive voltage samples (which are also called - a data window), then, by writing relation (43) for each of 
the samples - we can form a system of )(m  relations. It can be shown in a matrix form as: 
 

[ ] [ ][ ] [ ]exau += ,                                                           (44) 
 

given symbols are: [ ] [ ]Tm21 uuuu ,...,,= -vector of samples; [ ]e -vector of random noise (sample deviation 

from assumed signal model); [ ]a -coefficient matrix, with a dimension of ))(( 1M4m +⋅ ; [ ]x -variable vector 

defined in (44). Sampling frequency )( T1ff ss =  is considered to be constant in this analysis, so all samples 

have equal time period T  between them. Knowing this, matrix coefficients in [ ]a  are calculated according to 
the following relations: 

.,...,,)sin()(

),cos()(),cos()(),sin()(,)(

m21nnTkknTna

nTknanTkknTnanTkna1na

0k1M3

0k1M20k1M0k11
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ω

ωωω
(45) 

 
Algorithm considers that variables ),...,,( 1M421jx j += , (elements of vector [ ]x  in (44)) do not change 
their values during one data window. This assumption is correct, knowing that frequency is related with 
generator's speed change in the system. Since these machines have a relatively large inertia, frequency usually 
won't change during one data window even with bigger disturbances of active power (data window width usually 
ranges from one to three periods of measured signal s060020 )..( − ). So, system of equations (44), has 

)( 1M4 +  unknown variables. Minimal data window width should be at least 1M4m +=min , in order to 
have a single solution. Usually, data window width is larger then minimal, which means that system is redundant 
( )1M4m +> -that ensures more stability in the cases when signal contains much noise. Knowing that each of 
the equations in (44) contains noise signal, it is most appropriate to use least error squares method. Essential 
thing in this method would be to find an optimal estimation of vector of variables [ ]x , so that random noise is 

minimal. According to this method, optimal estimation of vector [ ]*x  would be: 
 

[ ] [ ] [ ][ ] [ ] [ ] [ ][ ]uAuaaax T1T ==
−* ,                                                 (46) 

 
[ ]A  is left pseudoinverse matrix of [ ]a . Elements of this matrix depend on sampling period and assumed 

frequency 0ω , and they can be calculated in advance, which is good because it saves cpu time. After calculation 

of vector [ ]x , we can also determine: DC voltage component, effective values and starting phases (calculated in 
relation to first sample in data window) of basic harmonic and higher harmonics included in the model, 
frequency deviation from nominal value. Calculation of these parameters is done according to following 
relations : 
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Using second and third relation in (47) (usually relations are applied to first harmonic cause its dominant) 
frequency deviation in current data window, which means its sign and modulus, can be determined. Accuracy of 
frequency determination is mostly satisfying. More advanced approach in least error squares method would 
include frequency feedback. Basic idea is iterative correction of frequency 0ω , which results in bringing 
linearization point closer to real frequency in each iteration step (equation (43)). This way, we can achieve 
desired accuracy of frequency, in certain number of steps. Iterative algorithm can be given with following 
equations : 

[ ] [ ][ ] [ ] [ ][ ] i1iiii1i1ii1iii uAxuAx ωωωωω ∆+=== −++− ,)(,)( ,                         (48) 
 
given symbols are: i1i ωω ,−  - estimated frequency in )( 1i − -th and i -th iteration respectively; 

[ ] [ ])(,)( ii1ii AA ωω − -left pseudoinverse matrices of coefficients, calculated for 1i−ω , iω , recpectively; 

[ ] [ ]1ii xx +, -optimal estimation of vector of variables in )( 1i − -th and i -th iteration, respectively; iω∆ - 

correction of frequency astimated in )( 1i − -th iteration. Condition needed for iteration stop is that current 
frequency correction is smaller of some value, given in advance. Iterative algorithm has proven to have good 
frequency estimation qualities. Drawback of this method lies in the fact that coefficients of matrix [ ]a  (its left 
pseudoinverse matrix) need to be calculated in every iteration. This results in increased cpu time, especially 
when inverting [ ]a . That is the main reason for rare usage of this method in relay protection. In order to speed 

up the process, way to avoid calculation of [ ]A  in each iteration step  needs to be found. Therefore, [ ]a  needs to 

be analysed; [ ]A  as its pseudoinverse matrix also; relations (47) which define a process of extraction of 

measured frequency from vector of variables [ ]x , are also of interest. Following relation shows spread form of 

matrix  [ ]ia ; it corresponds with linearized model of measured voltage signal, near current frequency i0ω , 
estimated in i -th iteration: 
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Matrix [ ] )( 1M4mxia +  in (49) is shown in general form, which means that signal includes DC voltage component, 

main harmonic and higher harmonics up to order of M . Number of matrix rows can be decreased, if we do not 
take into count some of them (the even ones, for example). Number of columns in matrix corresponds with 
number of samples m . In order to form an optimal estimation of vector [ ]ix , it is needed according to (46), to 

calculate matrix [ ]iA . Spread form of matrix [ ]iA  is shown in the following relation: 
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Using this relation, equation (46) can be shown in spread form, given with (51). Calculation of frequency 
correction iω∆ , in comparison to current frequency i0ω , can be done by using second and third expression in 
(47). In matrix equation (51), rows (except the first and the last one) that also exist in calculation of frequency 
correction, are marked; they are based on phasor components of voltage's main harmonic (second and third 
expression in (47), already mentioned). Second and third equation in (47) define frequency deviation, both in 
value and in sign. That means that only two rows of current matrix [ ]iA  are active, in frequency calculation. 

However, for reliable frequency estimation, four rows in matrix [ ]iA  need to be monitored (two of them 
correspond with first relation in (47) and the other two with second relation in (47)). To be more precise, during 
signal processing, it can occur that first sample in data window (referent sample) has similar value (or close 
value) with the value of voltage signal at its peak or at zero; that means that one of the current phasor 
components (real or imaginary) becomes equal (or near) to zero. 
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In this case, one of the two relations in (47) becomes numerically undefined (division with zero), and results in 
calculation error. Using fourth relation in (47) this can be avoided, but this relation can't give deviation sign, so 
its practically useless. The only solution is to monitor both components and to use one of them that is larger by 
modulus value, for current data window. Matrix elements of identified rows (in [ ]iA ) as well as other matrix 

elements which correspond with frequency i0ω , have to be calculated in each iteration. That means more cpu 
time, when having in mind relatively complicated matrix [ ]ia  and large matrix computations. Basic idea is to 
calculate elements of matrix [ ]iA  in advance, for sequence of equally distant frequency values, within the 
defined range around nominal value. For each of the [ ]iA  matrices calculated, submatrices that contain only four 
needed rows would be formed; those rows are enough for frequency estimation around working point. 
Submatrices together, form one matrix [ ]*A , which includes complete measurement range. This matrix is put into 
memory of digital relay and addressed in appropriate way. Only the identification of corresponding submatrix 
(whose base frequency is nearest to current process' frequency) is done in iterative process. Rest of the process 
includes simple computations that do not include much cpu time. Number of submatrices N , which form matrix 
[ ]*A  depend measurement range )( minmax ωω −  and computation step 0ω∆ , which means-with range 

frequency. If matrices have equally distant frequency, then N  is calculated with:  
 

0

N
ω
ωω

∆
−

= minmax ,                                                                  (52) 

 



parameters minmax ,ωω  and 0ω∆  need to be chosen, so that N  is integer. Relation (53) is general form of 
matrix [ ]*A . According to things said, [ ]*A  has dimension of )( Nxm4 . It is important to notice that matrix 
dimensions don't depend on harmonic level included in the signal. According to mathematical model, relatively 
simple frequency (and voltage) estimation algorithm is formed. Algorithm is shown in picture number 3. 
Symbols have the following meaning : 

maxmin ,ωω -lower and upper frequency range (which is covered with coefficient matrix [ ]*A ) boundary; 0ω∆ - 

frequency step in [ ]*A  matrix; nω -nominal frequency; i -iteration counter; maxi -maximal allowed number of 

iterations in frequency calculation; j -current row pointer in [ ]*A ; maxj -maximal pointer value 

( 33
0

minmax
max −

∆
−

=−=
ω
ωω

Nj ); pR, -working registers; u -register for storage of samples from current data 

window; qr uu , -registers for storage of voltage's real and imaginary component (of the main harmonic); ω - 

actual frequency; ω∆ -actual correction of frequency, calculated in previous step (iteration). 
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Suggested algorithm is based on assumption that signal's frequency can be considered constant during one data 
window. Sampling frequency and data width are non changeable and defined in advance. Initialization of 
frequency measurement sets working frequency to value nω . According to that, pointer j  is automatically 

being set to first row of coefficients' submatrix [ ]*A  that corresponds with nominal frequency nω . Iterative 
process starts with succesive multiplication of submatrix rows and current vector of samples. Iteration process 
stops in one of three cases: 
1)Calculated frequency is smaller then one half of matrix step 0ω∆ . In that case, frequency correction cannot be 
continued anymore. Result of measurement is correct and it is a sum of frequency calculated in the previous step 
and actual correction ω∆ . New data window is taken, working frequency stays on value that has been 
calculated, and new iterative process is started. 
2)Current frequency ω  is out of measurement range covered by matrix [ ]*A . "Breaktrough" of measurement 

range is signalled. New data window is taken and frequency set as ( nωω = ) . Estimation is continued. 
3)Number of iteration exceeds maximum allowed.  This limit was included to prevent possibility to "stuck" and 
to prevent slow convergence. Way to solve this is the same as restart described in 2). 



 

Complete algorithm suggested here is based on relatively small number of mathematical relations which do not 
require much computer hardware resources; therefore it is very fast. Suggested algorithm does estimation of 
phasor components (of voltage's main harmonic) with intention of frequency determination, but it is also a 
voltage estimator. Therefore, besides frequency measurement, algorithm also does voltage's effective value 
measurement (of the signal's main harmonic). Voltage measured in this way is easy for showing on display, 
cause it represents mean effective value (of the main voltage harmonic) on an interval of data window width. 
 
6.CONCLUSION 
 
Protection functions' algorithms, in microprocessor protection of distributive leads MPZ - ZIM, have been 
thoroughly shown trough this work. Common to all of them is their simplicity and accuracy in frequent range 
that's of interest. Algorithms for measurement of currents, voltages and symmetrical components are based on 
recursive Fourier's method, which has been modified for this purpose, so frequency change within few Hz has 
very small influence on their accuracy. Then, on the basis of these processed signals (of currents, voltages and 
symmetrical components), algorithm for measurement of power has been thoroughly shown; also, one option of 
directional protection has also been given (in the form of block diagram). On the basis of digitally processed 
phase currents, algorithm for thermal protection has been shown (as well as its block diagram). In the end,  
frequency protection algorithm, based on least error squares method, has been presented. 
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